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The extensive family of M4E4 (E ) S, Se, Te) cubane clusters
has been expanded to include lanthanide ions, with the synthesis
and isolation of (py)8Yb4Se4(SePh)4 (1) and (py)10Yb6S6(SPh)6
(2). The successful inclusion of a redox-active Ln ion into a
cubane core establishes the possibility of synthesizing novel
magnetic or unusually reactive cubanes, and the presence of labile
neutral donor ligands on each Yb(III) ion creates an opportunity
for preparing ordered cluster arrays.

Chalcogenido clusters of the p-,1 d-,2 and f-block3 metals
continue to attract attention as models for understanding the
relationships between molecular and solid state physical proper-
ties. The well-documented family of M4E4 cubane clusters,4

which encompass homo- and heterometallic compounds, are
particularly well studied. While cubane chemistry spans virtually
the entire d block, i.e., from V to Cu or from Cr to W, the
analogous f-block derivatives do not exist. Much of the cubane
synthetic effort is driven by the interest in understanding the
important redox activity of cubane fragments in nitrogenase, but
these compounds also show interesting chemical/physical proper-
ties and have potential applications in materials synthesis.5 We
report here that chalcogenolate complexes of the smaller lan-
thanides react with elemental E to form Ln4E4 cubes with
octahedral Ln(III) ions.

The molecular chalcogenolate (py)4Yb(SePh)2 reduces6 ele-
mental Se in pyridine to give the cubane cluster (py)8Yb4Se4-
(SePh)4 (1), which can be isolated as deep red crystals in 73%
yield.7 The structure8 of 1 (Figure 1) contains an alternating array
of Yb(III) and Se2- ions at the vertices of a cube, with terminal

SePh and two pyridine ligands completing each octahedral Yb(III)
coordination sphere. For each of the four Yb atoms, the Yb-
selenido bond trans to the terminal SePh ligand is significantly
longer than either of the two Yb-Se2- bonds trans to pyridine
ligands. Such asymmetric bond lengths were noted previously
in the structure ofmer-(py)3Yb(SPh)39 and can also be found in
the structures of the [(DME)Yb(SePh)4]10 anion and (py)3Yb(S-
2,4,6-iPr3-C6H3)3,11 all of which suggest the presence of a small
but significant trans influence. While a covalent interaction
between Ln 4f and chalcogen orbitals seems implausible, the
lanthanides do have vacant 5d and 6p shells available, and
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Figure 1. Molecular structure of (py)8Yb4Se4(SePh)4 (1) with the C and
H atoms removed. Thermal ellipsoids are shown at the 50% probability
level. Selected bond lengths (Å): Yb1-Se4, 2.765(1); Yb1-Se2,
2.797(1); Yb1-Se1, 2.812(1); Yb1-Se5, 2.827(2); Yb2-Se1, 2.760(1);
Yb2-Se3, 2.770(1); Yb2-Se2, 2.806(1); Yb2-Se6, 2.808(1); Yb3-Se4,
2.767(1); Yb3-Se1, 2.767(1); Yb3-Se3, 2.820(1); Yb3-Se7, 2.863(1);
Yb4-Se2, 2.765(1); Yb4-Se3, 2.769(1); Yb4-Se4, 2.773(1); Yb4-Se8,
2.869(1).
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covalent bonding descriptions involving these orbitals have
routinely been applied to Ln2E3 solids.12

The analogous sulfur compound was targeted next, and because
SPh is not abstracted from Ln ions by Hg(SPh)2,13 the sulfur cube
can most easily be prepared by first reducing PhSSPh with a Yb/
Hg amalgam in pyridine to form Yb(SPh)3 and then adding
elemental S to the mixture. Saturation of the filtered solution
gives red crystals of (py)10Yb6S6(SPh)6 (2) in 59% yield.14 Cluster
2 (Figure 2) is a cubane fragment with an additional Yb2S2 layer
capping one of the cube faces.15 There are three different
octahedral Yb(III) coordination environments: four S2- and two
py (Yb3, Yb4); three S2-, 2 py, and 1 SPh (Yb2, Yb6); 3 S2-, 1
py, and 2 SPh (Yb1, Yb5). Again, the Yb-S2- bond lengths
adopt a range of values that are consistent with a trans influence.
The Yb-µ4-S2- bonds trans to S atoms (Yb1-S4; Yb5-S3) are
significantly longer than the corresponding bonds trans to pyridine
(Yb6-S4; Yb2-S3); these bonds are also longer than any of the
Yb3-S or Yb4-S bonds, all of which are trans to pyridine. Of
theµ3-S2- ligands, Yb-µ3-S2- bond lengths trans to SPh average
0.010-0.037(1) Å longer than the Yb-µ3-S2- bonds trans to py.

The intense colors of1 and 2 are tentatively attributed to
chalcogenido to Yb(III) charge transfer (CT) absorptions. This

assignment is based primarily on the visible spectra of redox-
active Ln(ER)3 compounds,9,16and from more recent observations
that Sm8S6(EPh)12 (E ) S3d, Se17) clusters are light yellow while
the analogous Sm8Se6(EPh)12 selenido clusters are deep orange.3c,17

Each cluster has a broad absorption maximum (1, 368 nm;2,
361 nm) that is higher in energy than the LMCT absorption in
the corresponding Yb(EPh)3 molecules9 (E ) S, λmax ) 470 nm;
Se,λmax ) 510 nm). Further studies are currently in progress to
confirm these CT assignments and possibly extract more than a
single absorption maximum, to determine the factors that govern
cubane formation, to further probe the inequivalent Ln-E bond
lengths, and to covalently link these paramagnets in polymeric
arrays.
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Figure 2. Molecular structure of (py)10Yb6S6(SPh)6 (2) with the C and
H atoms removed. Thermal ellipsoids are shown at the 50% probability
level. Selected bond lengths (Å): Yb1-S1, 2.648(7); Yb1-S2, 2.671(6);
Yb1-S8, 2.679(7); Yb1-S7, 2.677(7); Yb1-S4, 2.803(7); Yb2-S2,
2.631(7); Yb2-S3, 2.656(7); Yb2-S1, 2.668(7); Yb2-S9, 2.699(7);
Yb3-S1, 2.621(7); Yb3-S6, 2.632(7); Yb3-S3, 2.681(6); Yb3-S4,
2.713(7); Yb4-S5, 2.630(6); Yb4-S2, 2.640(7); Yb4-S3, 2.678(7);
Yb4-S4, 2.692(6); Yb5-S11, 2.654(7); Yb5-S6, 2.666(6); Yb5-S10,
2.680(7); Yb5-S5, 2.690(7); Yb5-S3, 2.733(7); Yb6-S5, 2.638(6);
Yb6-S6, 2.648(7); Yb6-S12, 2.654(7); Yb6-S4, 2.700(7).
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